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Abstract
Clifford Group Equivariant Neural Net-
works (CGENNs) leverage Clifford algebras and
multivectors as an alternative approach to incor-
porating group equivariance to ensure symmetry
constraints in neural representations. In principle,
this formulation generalizes to orthogonal groups
and preserves equivariance regardless of the
metric signature. However, previous works
have restricted internal network representations
to Euclidean or Minkowski (pseudo-)metrics,
handpicked depending on the problem at hand. In
this work, we propose an alternative method that
enables the metric to be learned in a data-driven
fashion, allowing the CGENN network to learn
more flexible representations. Specifically, we
populate metric matrices fully, ensuring they
are symmetric by construction, and leverage
eigenvalue decomposition to integrate this
additional learnable component into the original
CGENN formulation in a principled manner.
Additionally, we motivate our method using
insights from category theory, which enables
us to explain Clifford algebras as a categorical
construction and guarantee the mathematical
soundness of our approach. We validate our
method in various tasks and showcase the
advantages of learning more flexible latent metric
representations. The code and data are available
at https://github.com/rick-ali/Metric-Learning-
for-CGENNs

1. Introduction
Clifford (or geometric) algebras play a significant role in
physics (Baylis, 2004), where they have been used to repre-
sent operators such as spinors and Dirac matrices in quan-
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tum mechanics, Maxwell’s equations in electromagnetism,
and Lorentz transformations in relativity. They leverage
addition and the geometric product as their two fundamental
operations, providing a powerful mathematical language
for expressing geometric concepts in a unified manner. In
particular, they can describe rotations, reflections, transla-
tions, and other geometric transformations succinctly, which
frequently arise in physical phenomena.

Recently, Clifford algebras have been introduced to
deep learning: Clifford Group Equivariant Neural Net-
works (CGENNs) (Ruhe et al., 2023) harness the mathe-
matical framework of Clifford algebras to represent data in
a way that maintains geometric symmetries and equivari-
ance with respect to several groups such as O(n), SO(n),
E(n), and SE(n). However, they currently support only
diagonal and fixed metrics to model internal network rep-
resentations. These typically involve the standard metric
on Euclidean space, represented as QE = diag(1, . . . , 1),
and the Minkowski pseudo-metric, QM = diag(−1, . . . , 1),
which, in principle, have inherent physical significance but
must be chosen a priori. Ideally, we would like to enable
the model to learn as rich internal representations as possi-
ble without being constrained to diagonal metric matrices.
Thus, inspired by recent work on latent trainable geome-
tries (Borde & Kratsios, 2024; Lu et al., 2023), we advocate
for learning the metric in a data-driven fashion via gradient
descent.

Our contributions are as follows:
1. We extend CGENNs by integrating learnable metrics,

allowing the network to adapt its internal representa-
tions dynamically rather than relying on fixed, diagonal
metrics.

2. We employ eigenvalue decomposition to transform the
full metric matrix representation into an intermediate
computationally tractable diagonal form that can easily
be integrated into CGENNs, while ensuring that the
input and output data remain consistent across different
geometric spaces.

3. We leverage category theory to provide a theoretical
foundation for our method. By viewing Clifford Alge-
bras as categorical constructions, we justify the trans-
formations applied within the network, ensuring that
our approach is mathematically sound.
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We validate our approach through experiments on various
tasks, including n-body simulations, signed volume compu-
tations, and top-tagging in particle physics.

2. Related Work
The Role of Symmetries in Deep Learning Broadly
speaking, a symmetry of a system is a transformation that
maintains a particular property of that system, ensuring it re-
mains unchanged or invariant. Symmetries are widespread
in real-world problems and data distributions that we aim to
model in deep learning. While symmetries could be learned
solely from data, integrating invariance and equivariance
within artificial neural network architectures concerning spe-
cific group actions has emerged as an effective inductive
bias, especially in scenarios with limited data (Bronstein
et al., 2021).

From Complex Numbers and Quaternions to Multivec-
tors in Neural Representations Initially, the motivation
for complex-valued neural representations stemmed from
their superior performance within the realm of sequence
modeling and Recurrent Neural Networks (RNNs) (Wis-
dom et al., 2016; Arjovsky et al., 2016). Likewise, other
works also motivated them from the perspective of opti-
mization (Nitta, 2002), generalization (Hirose & Yoshida,
2012), and faster learning (Danihelka et al., 2016). Follow-
ing this line of research, complex-valued neural networks
proposed a number of new building blocks that incorporated
complex value representations and generalized traditional
operations in neural networks such as batch normalization,
weight initialization, ReLU activations, convolutions, etc.,
enabling them to discern intricate patterns that conventional
real-valued networks might struggle to capture (Trabelsi
et al., 2018). Quaternion based neural networks (Gaudet &
Maida, 2018; Parcollet et al., 2019) further expanded on this
line of research and introduced three imaginary components
for data representation. More recently, the focus has shifted
towards leveraging complex representations in the context
of geometric deep learning (Bronstein et al., 2021) rather
than in sequence modelling. Going beyond complex num-
bers and quaternions, Clifford algebra can encode richer
representations all the way from scalars, vectors, bivec-
tors, and trivectors, to other k-vectors. This capability has
been showcased in studies that substitute convolution and
Fourier operations in neural PDE surrogates with Clifford
counterparts for both 2D and 3D tasks (Brandstetter et al.,
2023). Particularly relevant to our work are Clifford Group
Equivariant Neural Networks (CGENNs) (Ruhe et al., 2023)
which leverage Clifford algebra to model equivariance under
orthogonal transformations of the Clifford group. However,
current CGENNs are constrained by their support solely
for diagonal and fixed metrics, thereby limiting the internal
geometric representations they can effectively capture.

Metric Learning enables models to learn how to measure
similarity between data points by employing an optimal dis-
tance metric tailored to specific learning tasks, rather than
relying on predefined, static metrics (Kulis, 2013). General-
izing metrics beyond simple Euclidean embeddings has been
extensively studied in the literature by leveraging constant
curvature Riemannian manifolds, stereographic projections,
and product manifolds (Gu et al., 2018; Ganea et al., 2018;
Skopek et al., 2020; Borde et al., 2022; 2023; 2024; Krat-
sios et al., 2023). However, most of these works, similar
to CGENN, pre-define the used metric before optimization.
Other recent studies have proposed embeddings with asso-
ciated differentiable metrics instead, which more closely
resemble our proposed approach (Lu et al., 2023; Borde &
Kratsios, 2024).

Category Theory in Deep Learning Category theory has
recently gained traction in the literature as a unifying lan-
guage capable of formalizing and extending existing deep
learning frameworks. For instance, (Gavranović et al., 2024)
use 2-monads to generalize geometric deep learning to non-
invertible operations; (Fong et al., 2019) formalize backprop-
agation as a functor; and (Villani & Schoots, 2023) show
that any deep ReLU network has a functionally equivalent
three-layer network. Furthermore, category theory has also
inspired novel and successful learning schemes: (de Haan
et al., 2020) use functors to construct natural graph networks,
generalizing permutation equivariance; and (Hansen & Geb-
hart, 2020; Bodnar et al., 2023; Barbero et al., 2022b;a)
augment the message-passing procedure underlying most
graph neural networks with geometric information carried
by sheaves, a well-known categorical construction in al-
gebraic topology and geometry. Similar sheaf based ap-
proaches have also been extended to hypergraphs (Duta
et al., 2023).

3. Background
Next, we review the mathematical foundations of our ap-
proach, including metric spaces, Clifford algebras, eigen-
value decomposition, and category theory. We also discuss
the key components comprising CGENNs, such as algebra
embedding layers, generalized linear layers, geometric prod-
uct layers, normalization layers, and grade-wise nonlinear
activation functions.

Inner Product and Metric Spaces An inner product ⟨·, ·⟩
on a vector space V over a field K ∈ {R,C} is a map
V × V → K such that, for all x, y ∈ V and a, b ∈ K,
satisfies: conjugate-symmetry, ⟨x, y⟩ = ⟨y, x⟩ where · de-
notes complex conjugation; linearity in the first argument,
⟨ax+ by, z⟩ = a⟨x, z⟩+ b⟨y, z⟩; and positive-definiteness,
⟨x, x⟩ > 0 for all x ̸= 0. The inner product is often ex-
pressed by the matrix representation Q of a bilinear form
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satisfying the conditions above. In this case, the inner prod-
uct takes the form ⟨x, y⟩ = xTQy. For example, if Q = I ,
then this is the usual dot product. A positive definite bilinear
form Q, i.e. a matrix whose eigenvalues are all positive,
induces a norm || · || on V by ||x|| =

√
xTQx. As for

the previous example, if Q = I , then this is the standard
Euclidean norm. Furthermore, a norm induces a metric (or
distance) d on V by setting d(x, y) = ||x − y||, making
(V, d) a metric space. However, we are mainly concerned
with metrics arising from matrices Q, and therefore we will
refer to such bilinear forms as metrics. In this work, we fo-
cus on learning the metric for CGNNs. During training, our
algorithm initializes metrics toQ = diag(1, . . . , 1), the stan-
dard metric on Euclidean space, and Q = diag(−1, . . . , 1),
the Minkowski pseudo-metric1, and iteratively updates them
via gradient-descent.

Clifford Algebras A Clifford Algebra, denoted Cl(V,Q),
extends the scope of classical algebra and subsumes alge-
braic structures such as complex numbers and quaternions.
It is defined on a vector space V over a field K, together
with a quadratic form Q : V 2 → K that maps pairs of
vectors to the field. Its algebra operation, the geometric
product, expresses geometric transformations, such as the
inner ⟨., .⟩ and wedge product ∧ 2 in algebraic terms. For
all v, w ∈ V , the geometric product vw is:

vw = ⟨v, w⟩+ v ∧ w.

The Clifford Algebra Cl(V,Q) is defined as a quotient of
the tensor algebra T (V ) =

⊕∞
k=0 T

k(V ), where T k(V ) =
V ⊗V · · ·⊗V k times, with the convention T 0(V ) = K, the
underlying field. The quotient defining Cl(V,Q) is T (V )
modulo the ideal generated by v ⊗ v −Q(v, v) · 1, which
essentially imposes the equation v⊗v = Q(v, v)·1 on T (V ).
Clifford Algebras also have a categorical construction (see
Section 4.3) which will prove relevant to our methodology.

With an orthogonal basis {e1, e2, . . . , en} for V , the alge-
bra is spanned by elements of the form ei1ei2 · · · eik where
0 ≤ k ≤ n and 1 ≤ i1 < i2 < · · · < ik ≤ n. These
span vectors, bivectors, and higher-dimensional constructs,
representing directional, area, and volumetric information
respectively. Hence, an element of the Clifford Algebra
Cl(V,Q) is called a multivector, sometimes also referred
to as Clifford numbers or multors (Snygg, 2011). The var-
ious dimensions (e.g., scalar, vector, bivector, etc.) of a
multivector are referred to as grades.

The dimension of a Clifford Algebra Cl(V,Q) scales as 2n

for a vector space V of dimension n. For instance, in a

1The Minkowski metric is technically a pseudo-metric, as it
violates positive-definiteness.

2(v ∧ w)ij = (viwj − vjwi) for all v, w ∈ V . We refer the
interested reader to (Darling, 1994).

two-dimensional space (n = 2), an element x ∈ Cl(V,Q)
is represented as:

x = x(0) · 1 + x(1) · e1 + x(2) · e2 + x(12) · e1e2,

with x(i) ∈ K, 1 is the algebra’s unit, and ei are basis
vectors of V . The geometric product for multivectors dis-
tributes over +, analogously to the product of polynomials.
Indeed, one could compute the geometric product between
multivectors v and w by treating each ei as a variable in
a polynomial and performing polynomial multiplication
without assuming commutativity of multiplication of the
variables (eiej ̸= ejei). Additionally, the result should in-
corporate the relations v2 = Q(v, v) for all vectors v ∈ V
and vw = −wv for orthogonal vectors v, w ∈ V . Hence,
unlike the polynomial’s case, the geometric product is not
commutative.

The Clifford Group, often denotedCl×(V,Q) is the set of el-
ements x ∈ Cl(V,Q) that have an inverse x−1 ∈ Cl(V,Q)
with respect to the geometric product, i.e. xx−1 = x−1x =
1. This group stands out for its capacity to algebraically
represent geometric transformations such as rotations, re-
flections, translations and screws.

Norms in Clifford Algebras While it is clear how to
calculate a norm of v ∈ V with Q, namely ||v|| =

√
vTQv,

we still need to specify its corresponding operation for x ∈
Cl(V,Q). Let β : Cl(V,Q) → Cl(V,Q) be the main
anti-involution of Cl(V,Q), the function that takes x and
‘inverts’ the order of its components:

β(x) = β

(∑
i∈I

ci vi,1 · vi,ki

)
=
∑
i∈I

ci vi,ki · vi,1.

For example, in 2 dimensions:

β(x) = β(x(0) · 1 + x(1) · e1 + x(2) · e2 + x(12) · e1e2)
= x(0) · e1e2 + x(1) · e2 + x(2) · e1 + x(12) · 1.

Now, let x1, x2 ∈ Cl(V,Q) and b : Cl(V,Q)→ Cl(V,Q)
be the function:

b(x1, x2) = (β(x1)x2)
(0)
,

where juxtaposition is the geometric product and (·)(0) de-
notes the projection on the scalar component of the result-
ing multivector. Finally, by denoting xTQx as Q(x) for
x ∈ V , we can extend this map to Q(x) for x ∈ Cl(V,Q)
by setting Q(x) = b(x, x). With this notation, the norm of
x ∈ Cl(V,Q) is ||x|| = (Q(x))

1
2 . This will be important

for the normalisation operations of the CGENN.

Eigenvalue Decomposition In linear algebra, a matrix M
in Kn×n over the field K is said to be diagonalizable if
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there exists an invertible matrix P also in Kn×n such that
M = P−1∆P , where ∆ is a diagonal matrix. This process
is known as the eigendecomposition of M , because the di-
agonal entries of ∆ represent the eigenvalues of M , and the
columns of P correspond to their respective eigenvectors.

One can interpret P as a change of coordinates that repre-
sents a vector x in Kn using the coordinates defined by the
eigenvectors of M . Indeed, the ith column of an invertible
matrix T is precisely Tei, indicating where T maps the
canonical basis element ei; and because a linear transfor-
mation is entirely characterised by its effect on the basis
elements, this information is sufficient to fully describe the
matrix’s action. Thus, Px is simply x expressed in the basis
provided by P . Within this basis, the operation of M is ex-
pressed by the diagonal matrix ∆: Mx = ∆Px = ∆(Px).

Specifically, if K = R and M is symmetric, the Spectral
Theorem ensures that M can be diagonalized with P be-
ing orthogonal, that is, P−1 = PT . Now, if M functions
as a metric, the inner product between two vectors x, y is
calculated as follows:

xTMy = xTP−1∆Py = xTPT∆Py = (Px)T∆(Py),

indicating that when the vectors are expressed in terms
of the basis provided by P , the metric calculations remain
consistent as ifM were diagonal. This observation is crucial
for our implementation since the algorithm used for metric
calculations only supports diagonal metrics.

Basics of Category Theory Category theory is the study
of compositionality, where “objects” can be studied only in
their relationships to other objects. For example, to charac-
terise a singleton set, we will not say that it is a set S with
only one element, but rather, that there is a unique map from
any other set to S.

In the first instance, we can think of a category as a collec-
tion of objects of a certain kind, such as sets, groups, and
vector spaces, along with maps between them (also called
morphisms or arrows) that preserve their structure, such as
functions, group homomorphisms, and linear maps. Fur-
thermore, these should be able to be composed sensibly, so
that if f : A → B, g : B → C and h : C → D, where
A,B,C,D are objects in a category and f, g, h are maps,
then (h ◦ g) ◦ f = h ◦ (g ◦ f). A formal definition of a
category is given in Appendix B.

Functors, which we will use to motivate and justify our
metric learning algorithm, are maps between categories
that preserve their structure. Let C and D be categories.
A functor between them, F : C → D, is an assignment
of objects A in C to objects F (A) in D, and morphisms
f : A → B in C to morphisms F (f) : F (A) → F (B) in
D. This assignment should also respect the structure of the
categories, i.e., composition: F (g ◦ f) = F (g) ◦ F (f). A

formal treatment of functors is given in Appendix B.

Hence, functors map one category onto another. In particu-
lar, they allow us to translate a linear map between vector
spaces, a morphism in the category of vector spaces, to a
map between Clifford algebras, a morphism in the category
of associative algebras, thereby guaranteeing the soundness
of our proposed algorithm.

3.1. Clifford Group Equivariant Neural Networks

We now outline the main components of the CGENN, as
presented in (Ruhe et al., 2023). The overarching idea of
this neural architecture is to accept multivectors as inputs
and to process them in each of their grades separately. One
could visualise such a computation scheme by picturing
k parallel neural networks, each dedicated to one grade,
interacting with each other via the geometric product layer.
Importantly, each layer needs to be equivariant with respect
to any Clifford group transformations.

Algebra Embeddings As the CGENN accepts multivec-
tors as inputs, we need to embed inputs x into the Clifford al-
gebra Cl(V,Q). We do so with the function Embed, whose
form is application-specific. For example, if x is a scalar
quantity (such as the charge of a particle), it is embedded as a
scalar, i.e. Embed(x) = x·1+0e1+0e2+· · ·+0e1e2 . . . en.
Alternatively, if x is a point in V (such as the position
of a particle), it is embedded as a 1-dimensional multi-
vector, i.e. Embed(x) = 0 · 1 + x1e1 + · · · + xnen +
0e1e2 + · · ·+ 0e1 . . . en. If x is a volume, it is embedded
as Embed(x) = 0 · 1 + · · ·+ xe1 . . . en, and so on.

Linear Layers The first component of this architecture is
the linear layer. For x1, . . . xl ∈ Cl(V,Q), it is defined as:

y(k)cout
= T lin

ϕcout
(x1, . . . , xl)

(k) :=

l∑
cin=1

ϕcoutckin
x(k)cin

,

where ϕcoutckin
is a learnt scalar parameter depending on the

grade k, cin and cout are the input and output channels, and
(·)(k) is the projection on the kth grade. Therefore, the map
T lin
ϕcout

(x1, . . . , xl)
(k) is linear in each grade separately. This

is indeed an equivariant layer, as actions of the Clifford
group operate separately in each grade.

Geometric Product Layers The Geometric Product layer
is the main tool that allows different grades to communicate
in a geometrically principled manner. It is parameterised as
follows:

Pϕ(x1, x2)
(k) :=

n∑
i=0

n∑
j=0

ϕijk(x
(i)
1 x

(j)
2 )(k),

where ϕijk are learnable scalars for i, j, k ∈ {0, . . . , n}.
The equivariance of this layer is guaranteed by the fact that
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the actions of the Clifford group respect grade projections,
linearity, scalar multiplication, and products.

Normalisation To ensure numerical stability, CGENNs
implement equivariant normalisation layers, defined for
x(m) ∈ Cl(m)(V,Q) as:

Norm(x(m)) :=
x(m)

σ(am)(Q(x(m))− 1) + 1
,

where σ is the sigmoid function and am ∈ R is a learnable
parameter. Again, the operation is performed grade-wise
and is also equivariant because Q(x(m)) is, as shown in
(Ruhe et al., 2023) (Theorem 3.2). Here the logistic function
is used so that the denominator interpolates between 1 (no
normalisation) and Q(x(m)) (geometric normalisation).

Nonlinearities are implemented grade-wise to maintain
equivariance and are defined, for x ∈ Cl(V,Q)) as:

NonLinear(k)(x) := ψ(fk(x)) · x(k),

where ψ is any non-linear function R→ R and fk is a linear
function of the components of x(k).

4. Method
The following section details the metric learning method
proposed in this work, focusing on the initialisation and pro-
cessing of the metric through its eigenvalue decomposition.

4.1. Metric Initialization

In our method, the transition from a static metricQ, typically
initialized as a diagonal matrix to reflect basic geometric
properties of the space (e.g., Q = diag(1, 1, 1)), to a learn-
able metricM involves introducing small perturbations. The
process begins with Q, representing the initial geometric
configuration. To facilitate learning, a perturbation is added
to Q through:

M̃ =
1

2
Q+ ϵR,

where R is a random matrix with the same dimensions as
Q, and ϵ controls the amount of initial perturbation. To
ensure that M is symmetric, we add the transpose of M̃ to
itself, since the sum of two symmetric matrices is symmetric.
Hence, we obtain:

M = M̃ + M̃⊤ = Q+ ϵ(R+R⊤),

since Q is diagonal and Q = Q⊤. Therefore, M is equiva-
lent to adding “symmetric” noise, R+R⊤, controlled by ϵ,

to the initial metric. M is then passed to all downstream lay-
ers. The result is a learnable metric that enables the CGENN
to dynamically refine its internal geometric representation
in a data-driven fashion.

4.2. Learnable Metric via Eigenvalue Decomposition

The original CGENN (Ruhe et al., 2023) implements layers
consistent with a Clifford algebra Cl(V,Q) for a fixed bi-
linear form Q. In particular, this bilinear form is taken as a
metric, and it is used in the network’s computation of norms.
This setup only supports diagonal metrics, simplifying the
complexity of the space by considering distances that scale
linearly along each axis independently. However, real-world
data often exhibits correlations that are not captured well by
such simplistic assumptions.

The transition from a diagonal to a non-diagonal metric
introduces computational and theoretical challenges, par-
ticularly in the context of Clifford algebras. In this alge-
bra, metric computations are not as straightforward as in
Euclidean space. The norm calculation algorithm used in
CGENNs, originally described in (Dorst et al., 2009), only
supports diagonal metrics.

This requires us to map a non-diagonal metric to a diagonal
one in a geometrically principled way. We achieve this
with the metric’s eigendecomposition. A metric M can
be decomposed into its eigencomponents M = P−1∆P ,
where P is a matrix of eigenvectors and ∆ is a diagonal
matrix of eigenvalues. Therefore, we will use ∆ as the
diagonal matrix to compute normalisations, and carefully
modify the pipeline to make it geometrically meaningful
and theoretically sound. We assume that the input is given
in any basis {ei} in V . The metric learning procedure can
be summarised as follows:

Algorithm 1 Metric Learning for Clifford Group Equivari-
ant Neural Networks – Forward Pass

1: ∆, P ← eigendecomposition(M)
2: x← Embed(x)
3: x← P (x)
4: y ← CliffordNetwork(x,∆, ∗args)
5: y ← P−1(y)

Next, we proceed to motivate our approach.

Consistency of the Input Across Spaces One could sim-
ply adopt ∆ as a diagonal metric, but in this case, we would
compute norms according not to the standard basis of V ,
but with respect to the basis given by P , introducing incon-
sistencies. Therefore, we need to express the input in the
appropriate basis to make sense of ∆. We do so by applying
the change of coordinates P , as reflected in the experiments
in Section 5, by replacing the basis vectors ei with ξi = Pei,
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which is still a basis as P is invertible. We extend the linear
map x 7→ Px to a map P : Cl(V,M) → Cl(V,∆) such
that, for x ∈ Cl(V,M)

x = x(0) ·1+x(1) ·e1+x(2) ·e2+ · · ·+x(12...n)e1e2 . . . en,

P (x) = x(0)·1+x(1)·ξ1+x(2)·ξ2+· · ·+x(12...n)ξ1ξ2 . . . ξn.

This is motivated by the categorical construction of Clifford
algebras (Section 4.3). Importantly, we preserve the algebra
structure when translating multivectors from Cl(V,M) to
Cl(V,∆):

vw = −wv ⇐⇒ PvPw = −PwPv,
z2 = (Pz)2,

for any orthogonal v, w ∈ V and any z ∈ V . The proof
is given in Appendix A. Notably, we preserve consistency
with the embedding function outlined in Section 3.1. Opera-
tionally, when we deal with inputs v ∈ V , we can transform
them with Pv and embed the result, i.e.:

P (Embed(v)) = Embed(Pv),

as Pv = P (vie
i) = vi(Pe

i) = viξ
i using the Einstein

summation convention viei =
∑

i viei. Another special
case is when the input v is a volume. In this case, we have
the following relation:

P (Embed(v)) = Embed(det(P )v),

which we also prove in Appendix A.

Consistency of the Output Across Spaces The function
P−1 is implemented depending on the specific problem and
is a crucial step of our learning procedure. It is particularly
important when the output of a CGENN has a physical
interpretation. Suppose that the learning task is to predict
the particle’s position in an n-body problem (Section 5.2).
Then, if no change of coordinates is applied, the output
position is expressed in the basis {ξi}, but the input in
the basis {ei}. We harmonise the two by applying P−1 :
Cl(V,∆) → Cl(V,M), the extension of P−1, which we
define analogously to P . For any:

x = x(0) ·1+x(1) ·ξ1+x(2) ·ξ2+ · · ·+x(12...n)ξ1ξ2 . . . ξn,

P−1(x) = x(0) · 1 + x(1) · e1 + x(2) · e2 + . . .

+ x(12...n)e1e2 . . . en.

For example, if the output of the network is:

• a point y ∈ V (e.g. in 5.2), then P−1 takes the form
of y 7→ P−1y, similarly to the classical eigendecom-
position.

• a volume, i.e. the top grade of the algebra (e.g. in
5.1), then P−1 maps y 7→ det(P−1)y = 1

det(P )y.
This is because det(P ) is precisely how much an
n−dimensional volume in an n−dimensional space
is deformed (‘stretched’) by the linear transformation
P . A proof of this is the same as for P .

• a scalar in K, then P−1 is the identity function, as the
basis for scalars is the algebra’s identity 1.

• a probability (e.g. in 5.3), then the conversion is the
identity function, as in this case, the metric serves
simply as a computational aid for the models’ layers
and there is no inherent physical meaning.

Equivariance Linear projections are generally not equiv-
ariant. This means that our change of basis via P is also
not equivariant, as we allow for non-diagonal metric ma-
trices during optimization. In practice, we initialize the
CGENNs to be equivariant, including the input and output
transformations. We start with Euclidean or Minkowski
pseudo-metrics and use these as an initial prior. However,
we relax this condition and break equivariance during later
stages of optimization. It is important to note that internally,
the latent representations remain equivariant if we disregard
the change of basis projections.

4.3. Categorical Construction of Clifford Algebras

Clifford algebras have a categorical construction, which
justifies and motivates the construction of Algorithm 1. See
Appendix B for background on category theory. A Clifford
algebra Cl(V,Q) is a pair (A, i) with A a unital associative
algebra over K and i : V → Cl(V,Q) a linear map with
i(v)2 = Q(v) · 1A for all v ∈ V satisfying the following
universal property: given any unital associative algebra A
over K and any linear map:

j : V → A such that j(v)2 = Q(v) · 1A for all v ∈ V,

there is a unique algebra homomorphism f : Cl(V,Q)→ A
such that:

f ◦ i = j,

i.e. j factors through Cl(V,Q) with i.

Hence, one can indeed see Cl as a functor VectQK →
AssocA that maps objects (V,Q) to Cl(V,Q) and mor-
phisms (linear maps that preserve quadratic forms) f :
(V,Q)→ (W,R) to maps:

f := Cl(f) : Cl(V,Q)→ Cl(W,R).

Functoriality is guaranteed by the universal property of
Clifford algebras, which ensures that maps between vec-
tor spaces preserving quadratic forms extend uniquely to
algebra homomorphisms between the respective Clifford
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algebras. Therefore, the maps P and P−1 in Algorithm 1
are precisely the extensions of the linear maps P and P−1

given by the functor Cl. Furthermore, our implementation
of P−1 uses the fact that P−1 = P −1 as per Section B.1

5. Experiments
In Sections 5.1, 5.2, and 5.3, we conduct experiments with
signed volumes, n-body problems, and top tagging, respec-
tively. Additionally, in Section 5.4, we explore the effect of
activating metric learning at different stages of training and
empirically examine its impact on optimization. In all ex-
periments, we use the default configurations of the baseline
CGENN (Ruhe et al., 2023) without any hyperparameter
tuning to ensure an equitable comparison.

5.1. O(3) Experiment: Signed Volumes

The signed volumes experiment involves a synthetic dataset
of random 3D tetrahedra. The network processes point
clouds, aiming to predict covariant scalar quantities (pseudo-
scalars) under O(3) transformations. The prediction accu-
racy is measured by the mean-squared error (MSE) between
the network’s output and the actual signed volumes of the
tetrahedra.

We compare CGENNs with a learnable metric against con-
ventional CGENNs. Note that in this experiment, metric
learning is initialised from the beginning of training along-
side all other model parameters. Other baselines include a
normal MLP, an MLP-based version of E(n) Equivariant
Graph Neural Networks (E(n)-GNNs) (Satorras et al., 2021)
(this architecture leverages artificial neural networks to up-
date positions with scalar multiplication), Vector Neurons
(VNs) (Deng et al., 2021) and Geometric Vector Perceptrons
(GVPs) (Jing et al., 2020). We train our model for 130, 000
steps, the same as the original CGENN. We calculate the
mean and standard deviation with 4 different seeds.

The experimental results, as presented in Table 1, indi-
cate that the learnable metric improves the performance
of the original CGENN model. It also outperforms all other
baselines. VNs and GVPs perform similarly with an MSE
slightly lower than 10−1, while MLPs achieve better perfor-
mance as the number of data samples increases, reaching
MSE losses of around 10−3. Hence, all other baselines re-
sult in MSE losses that are orders of magnitude higher than
those of CGENNs.

Table 1. Test MSE loss for the synthetic O(3) signed volume ex-
periments.

MSE
Model n = 1000 n = 65536

CGENN 1.1× 10−5 ± 1.1× 10−7 1.8× 10−6 ± 1.1× 10−7

Ours 8.3× 10−8 ± 1.0× 10−8 5.1× 10−8 ± 1.0× 10−8

5.2. E(3) Experiment: n-body

The n-body experiment, as introduced by (Kipf et al., 2018),
sets a benchmark for assessing equivariant neural networks
in the domain of physical system simulation, a topic further
researched by (Han et al., 2022). This experiment challenges
neural architectures to predict the three-dimensional paths
of n (we use n = 5) charged particles, thereby evaluating
their ability to accurately model dynamical systems.

We compare our model against the original CGENN, lack-
ing metric learning features, as well as steerable SE(3)-
Transformers (Fuchs et al., 2020), Tensor Field Net-
works (TFNs) (Thomas et al., 2018), Neural Message Pass-
ing for Quantum Chemistry Networks (NMPs) (Gilmer
et al., 2017), Radial Fields (Köhler et al., 2020), E(n)-
GNNs (Satorras et al., 2021), and Steerable E(3) Equivari-
ant Graph Neural Networks (SEGNNs) (Brandstetter et al.,
2022).

For this experiment, we train the network for 10, 000 steps
over 6 different seeds to obtain the mean and standard devi-
ation. We activate the metric learning at 90% of the training
duration. We further analyse the effect of activating metric
learning earlier during the training process in Section 5.4.

The findings, as detailed in Table 2, indicate an improve-
ment of our metric-augmented CGENN over the baseline
CGENN and other alternative methods. It is worth not-
ing that the CGENN presented in (Ruhe et al., 2023) was
trained for 131,072 steps, significantly longer than ours, and
nonetheless, we achieve a better performance.

Table 2. Test MSE loss on the n-body experiment for different
methods.

Method MSE (×10−3)
SE(3)-Tr 24.4
TFN 24.4
NMP 10.7
Radial Field 10.4
E(n)-GNN 7.0
SEGNN 4.3
CGENN 3.9± 0.1
Ours 3.369± 0.0436

5.3. O(1, 3) Experiment: Top Tagging

Jet tagging is a technique in collider physics for categorizing
the high-energy jets spawned by particle collisions, such as
those detected by the ATLAS detector at CERN (Aad et al.,
2008; Kogler et al., 2019). In particular, the experiment
presented here, in line with (Ruhe et al., 2023), focuses on
jet tagging for top quarks, the heaviest particles within the
Standard Model (Incandela et al., 2009). Our evaluation
is based on the benchmark provided by (Kasieczka et al.,
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2019).

We compare CGENN with metric learning against the origi-
nal CGENN model with a fixed Minkowski pseudo-metric.
Due to limited computational resources, we train both mod-
els for 30% of the training time reported in (Ruhe et al.,
2023) (100,000 steps, which took 32 hours using 4 A100
GPUs and an effective batch size of 32, as opposed to
the CGENN in (Ruhe et al., 2023), which was trained for
331,126 steps). The metric for our model is activated 80%
into training. Both models are run with default hyperparam-
eters as indicated by (Ruhe et al., 2023). At least under a
constrained computational budget, our method outperforms
the original CGENN as shown in Table 3, which is in line
with all previous experiments as discussed in Section 5.1
and Section 5.2.

Table 3. Test accuracy on the top-tagging experiment.
Model Accuracy
CGENN 0.8994
Ours 0.9102

5.4. Metric Activation

To identify the optimal timing for metric activation in
CGENNs, we explore different activation regimes. Our
results indicate that the timing of metric activation plays
a crucial role in the efficiency of learning. The challenge
in metric learning within CGENNs lies in the complexity
of optimising a single metric that affects every layer of the
network at once. Therefore, early activation might overcom-
plicate training. Conversely, late activation could function
as a fine-tuning stage, making the optimisation problem
more tractable.

Table 4 illustrates the outcomes of the n-body experiment,
comparing the final MSE loss across three distinct metric
activation timings. The results reveal that late activation,
occurring at 90% of the training duration, leads to the lowest
loss.

Table 4. n-body (n = 5) test MSE across different metric activa-
tion timings.

Metric Activation Timing MSE (×10−3)
Early (30% of Training) 3.554± 0.2051
Mid-Training (60% of Training) 3.489± 0.1190
Late (90% of Training) 3.369± 0.0436

5.5. Reproducibility and Hyperparameters

R is always generated from a uniform distribution with
all entries sampled from the interval [0, 1). Depending on
the experiment, the values for ϵ and Q are set as follows:
ϵ = 10−3 and Q = diag(1, 1, 1) for the E(3) n-body and

O(3) signed volume experiments, and ϵ = 10−7 and Q =
diag(1,−1,−1,−1)3 for O(1, 3) top tagging. The choice
of Q is in line with (Ruhe et al., 2023).

6. Conclusion & Future Work
Our research enhances CGENNs by integrating metric learn-
ing into the original model in a geometrically meaningful
way. Although, as suggested by (Ruhe et al., 2023), the
CGENN formulation generalizes to orthogonal groups and
preserves equivariance regardless of the metric signature,
previous work fixed the metric as a predefined network con-
figuration hyperparameter.

In this work, instead of fixing a metric from the start, we
allow the model to learn a non-diagonal metric matrix as
part of the optimization process in a data-driven fashion
via gradient descent. By leveraging eigenvalue decompo-
sition to perform an internal change of basis, we use the
eigenvectors to map different types of data to and from the
internal neural representation back to data space, ensuring
consistency of both input and output across spaces with-
out requiring explicit modification of the original CGENN
network layers, which in principle only support diagonal
metrics. Additionally, we employ category theory to moti-
vate the theoretical soundness of the approach by viewing
Clifford algebras as categorical constructions.

We validate our method empirically against different tasks,
including n-body, signed volume, and top-tagging experi-
ments. We find that enabling metric learning does indeed
lead to improved performance. We also analyze the effect
of making the metric learnable at different stages of the
optimization process, and we empirically find that doing so
towards the end of training better guarantees stable training
dynamics and generally leads to better final model perfor-
mance.

Future research possibilities include applying this approach
to more complex datasets. Similar to (Ruhe et al., 2023),
our evaluation did not encompass out-of-distribution tests.
Finally, exploring the potential of learning a different metric
at each layer may also be an interesting research avenue, but
care should be taken in terms of optimization dynamics and
to avoid overfitting.
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A. Proofs for Section 4.2
A.1. Proof 1

We wish to prove that, if P is an orthogonal transformation, then the algebra structure is preserved, i.e.

vw = −wv ⇐⇒ PvPw = −PwPv
z2 = (Pz)2

for any orthogonal v, w ∈ V and any z ∈ V . Because P : (V,M) → (V,∆), z2 is shorthand for M(z) = zTMz and
(Pz)2 for ∆(Pz) = (Pz)T∆Pz.

Direct Proof

[⇒] Assume vw = −wv. We show that PvPw = −PwPv by evaluating each side of the equation.

PvPw = ⟨Pv, Pw⟩+ Pv ∧ Pw = ⟨v, w⟩+ det(P ) v ∧ w = det(P ) v ∧ w
−PwPv = −(⟨Pw,Pv⟩+ Pw ∧ Pv) = −⟨v, w⟩ − det(P )w ∧ v = det(P ) v ∧ w

where we use the fact that P is orthogonal, i.e. ⟨Pv, Pw⟩ = ⟨v, w⟩, v, w are orthogonal, i.e. ⟨v, w⟩ = 0, and that for any
linear transformation A, Av ∧Aw = det(A)v ∧ w.

[⇐] assume PvPw = −PwPv. Then, because v, w are orthogonal, we get the identity

det(P )v ∧ w = −det(P )w ∧ v ⇒ v ∧ w = −w ∧ v

Because 0 ̸= det(P ) ∈ {±1}, as P is orthogonal. However, with the fact that 0 = ⟨Pv, Pw⟩ = ⟨v, w⟩ the LHS of the last
equality is vw, and the RHS is −wv, proving the right-left direction of the ‘only if’ part of the proposition.

Now, z2 =M(z) = zTMz = (Pz)T∆Pz = ∆(z) = (Pz)2

Categorical Proof

Because P : (V,M)→ (V,∆) is a vector space isomorphism that preserves quadratic forms, i.e. (V,M) ∼= (V,∆), and Cl
is a functor, we get Cl(V,M) ∼= Cl(V,∆) (Appendix B.1) via the unique extension P = Cl(P ).

A.2. Proof 2

We wish to prove
P (Embed(v)) = Embed(det(P )v)

By direct calculation:

P (Embed(v)) = P (v · e1e2 . . . en) = v · ξ1ξ2 . . . ξn
= v · (Pe1)(Pe2) . . . (Pen)
= det(P )v · e1e2 . . . en = Embed(det(P )v)

B. Background on Category Theory
Here, we provide some relevant background on Category Theory to support the discussion in Section 4.3.

B.1. Basics of Category Theory

Category Theory (CT) is, essentially, the study of compositionality: the study of complex systems through their simpler
parts. A key difference with set theory is that, for example, we are not allowed to inspect the internal structure of the objects.
Rather, we are interested in the relationships between them.

Definition B.1 (Category). A category C consists of:

• a collection ob(C) of objects

12
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• for each A,B ∈ ob(C) a collection C(A,B) of maps or arrows or morphisms from A to B

• for each A,B,C ∈ ob(C), a function

C(A,B)× C(B,C)→ C(A,C)
(g, f) 7→ g ◦ f

called composition

• for each A ∈ C an element 1A ∈ C(A,A), the identity on A.

Satisfying the following axioms:

• associativity: for each f ∈ C(A,B), g ∈ C(B,C), h ∈ C(C,D): (h ◦ g) ◦ f = h ◦ (g ◦ f)

• identity laws: for each f ∈ C(A,B), f ◦ 1A = f = 1B ◦ f

We are rather informal on the word “collection” when referring to the objects and morphisms, as they are not necessarily
sets. The reader interested in foundational issues in Mathematics can consult any Axiomatic Set Theory book, such as
(Takeuti & Zaring, 1973).

Examples of Categories To make our definition more concrete, we present some examples categories.

1. The category Set is the category with sets as objects and functions between sets as morphisms.

2. The category Grp is the category with groups as objects and group homomorphisms as morphisms.

3. The category Top is the category with topological spaces as objects and continuous maps as morphisms.

4. Let k be a field. The category Vectk is the category with vector spaces over k as objects and linear maps as morphisms.

5. The category 1 has a single object (denoted ∗) and at least one morphisms (the identity).

The main categories we are concerned with in this work are:

• The category VectQK whose objects are vector spaces over a field K equipped with a quadratic form and whose
morphisms are linear maps preserving the quadratic forms.

• The category AssocA whose objects are unital associative algebras and whose morphisms are algebra homomorphisms.

B.2. Functors

If sets have functions relating them, categories are related by functors. Intuitively, a functor maps objects to objects and
morphisms to morphisms in a compatible way.

Definition B.2 (Functor). Let A,B be categories. A functor F : A → B consists of:

• A function ob(A)→ ob(B), written as A 7→ F (A)

• For each A,A′ ∈ ob(A), a function A(A,A′)→ B(F (A), F (A′)) written as f 7→ F (f)

satisfying the following axioms:

• F (f ′ ◦ f) = F (f ′) ◦ F (f) whenever f, f ′ are composable in A.

• F (1A) = 1F (A) whenever A ∈ ob(A).

Examples of functors To make our definition more concrete, we present some examples of functors.

13
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1. The forgetful functors ‘disregard’ some properties of the objects they are mapping. For example, we can construct
a forgetful functor from Grp to Set by mapping a group to its underlying set, and a group homomorphism to the
corresponding map between sets.

2. The free functors are ‘adjoint’ to forgetful functors. They construct objects and maps in the target category with
elements that, a priori, do not have those properties. For example, one can construct a free functor from Set to Mon,
the category of monoids: given a set S, its image would be the monoid consisting of formal expressions of words such
as xyz3 (with x, y, z ∈ S). Given a function f : S → S′, its image will be the monoid homomorphism which maps
words in the alphabet given by S to words in the corresponding alphabet given by f(S).

3. The fundamental group π is a functor from Top* (pointed topological spaces) to Grp, mapping topological spaces with
a base-point to the corresponding fundamental group at that point, and a continuous map to a group homomorphism as
described in any topology textbook.

4. T , the tangent space, is a functor from the category of smooth manifolds with base-point Man* to Vect, which maps
a smooth manifold with base-point to its corresponding tangent space, and a smooth map between manifolds to the
corresponding tangent (linear) map: the differential. Therefore, the chain rule for differentiable functions is just an
instance of the functoriality of the tangent map.

Definition B.3 (Isomorphism). A map f : A→ B in a category C is an isomorphism if there exists a map g : B → A in C
such that gf = 1A and fg = 1B . g is called the inverse of f and A and B are said to be isomorphic, denoted A ∼= B.

Intuitively, two objects are isomorphic if they are essentially the same, i.e. if they share the same fundamental properties in
the context of the category they are in.

If F : A → B is a functor and A ∈ ob(A), B ∈ ob(B) with A ∼= B, then it is easy to see that F (A) ∼= F (B). Further,
F (f−1) = F (f)−1
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